

# Module Information

**Numerical Methods for Bioscientists** 

ASC\_4\_410\_1718

School of Applied Sciences

Level 4

## **Table of Contents**

| 1.  | Module Details                                     | . 3 |
|-----|----------------------------------------------------|-----|
| 2.  | Assessment of the Module                           | . 3 |
| 3.  | Introduction to Studying the Module                | . 3 |
| 3.1 | Overview of the Main Content                       | . 3 |
| 3.2 | Overview of Types of Classes                       | . 3 |
| 4.  | The Programme of Teaching, Learning and Assessment | . 3 |
| 5.  | Learning Resources                                 | . 4 |

### 1. MODULE DETAILS

Module Title: Numerical Methods For Bioscientists

Module Level: Level 4

Module Reference Number: ASC\_4\_410\_1718
Module Coordinator: Dr Aseel AL-Qutbi

MC Contact Details (Tel, Email, Room) <u>alqutba2@lsbu.ac.uk</u>, FW-310 Teaching Team & Contact Details Dr. Lisa Zaidell, 02078157986,

(If applicable): zaidell2@lsbu.ac.uk, E-226

#### ASSESSMENT OF THE MODULE

Coursework 1 will consist of 4 assessment sheets completed after practicals. You can expect to get feedback within 3 weeks of handing in your work. It will count 40% towards the module mark. Examination 1 will count 60% towards the module mark.

## 3. INTRODUCTION TO STUDYING THE MODULE

#### 3.1 Overview of the Main Content

The module will cover the mathematical skills needed for a profession in the biosciences. The teaching and student work will be done in the context of bioscience professions.

#### 3.2 Overview of Types of Classes

The module will run on a 3 week cycle which will run 4 times. Week 1 of each cycle will be a lecture and tutorial. Weeks 2 and 3 of each cycle will be a practical class attended by half of the students each time. Each student will attend for one of the 2 weeks. There will be 4 different practicals. Week 13 will be a mock examination self-marked in class.

# 4. THE PROGRAMME OF TEACHING, LEARNING AND ASSESSMENT

| SEMESTER 2 |                                        |  |
|------------|----------------------------------------|--|
| WEEK       | TOPIC                                  |  |
| 1          | Maths lecture and tutorial             |  |
| 2, J301    | Specific gravity practical for Group 1 |  |
| 3, J301    | Specific gravity practical for Group 2 |  |
| 4,         | Maths lecture and tutorial             |  |
| 5, J301    | Microscopy Practical for Group 1       |  |
| 6, J301    | Microscopy Practical for Group 2       |  |
| 7          | Maths lecture and tutorial             |  |
| 8, J302    | Enzyme assay practical for Group 1     |  |
| 9, J302    | Enzyme assay practical for Group 2     |  |
| 10         | Maths lecture and tutorial             |  |
| 11, E257   | Physiology Practical for Group 1       |  |
| 12, E257   | Physiology practical for Group 2       |  |
| 13         | Mock Exam                              |  |

## 5. <u>LEARNING RESOURCES</u>

1. Core Reading

Bryson, E. Willis, J. 2016. Foundation mathematics for bioscience

2. Optional reading Jeffrey, A. Mathematics for engineers and scientists.